Testing our statistical models 

 

Comparing between the average of 50 random sequences, and the result of our formula (formula a - for computing the expectation: number of palindrome of length l, to be found in a genome sequence of length N).

We test the formula over 10 different models (each model has different parameters).

 

 

Results summary

 

rand1

rand2

rand3

rand4

rand5

rand6

rand7

rand8

rand9

rand10

n

5000

10000

10000

50000

50000

60000

70000

70000

70000

80000

l

11

12

10

11

8

9

12

15

10

16

G

4

5

10

5

40

15

2

50

50

30

x

2

2

1

1

0

1

0

1

1

3

Formula

3.14

2.25

3.24

2.43

31.26

102.50

0.01

0.15

105.48

9.38

 

 

 

 

 

 

 

 

 

 

 

Avg of sim'

3.14

2.46

3.62

3.2

32.96

106.34

0

0.3

106.5

8.96

std

1.86

1.47

2.03

2.16

2.96

12.58

0.00

0.46

6.48

2.57

There is a very good compatibility between the formula result and the average result of the 50 sequences.

 

 

 Here down a detail results on the 50 random sequences,                                      for each of the 10 models

sim1

5

2

5

3

38

104

0

0

96

8

sim2

4

2

3

3

32

123

0

1

108

7

sim3

0

2

2

1

29

101

0

0

107

7

sim4

7

0

3

6

35

121

0

0

106

10

sim5

2

0

3

1

34

109

0

1

109

13

sim6

1

1

3

5

31

94

0

0

108

9

sim7

6

3

1

1

30

90

0

0

101

9

sim8

4

7

2

3

30

113

0

0

100

10

sim9

0

2

1

3

28

91

0

1

114

7

sim10

7

0

2

5

35

89

0

1

100

10

sim11

5

4

6

1

32

122

0

0

114

5

sim12

2

2

2

3

36

125

0

0

117

7

sim13

1

3

3

1

30

108

0

0

114

13

sim14

6

2

6

3

35

114

0

0

115

7

sim15

5

2

3

1

31

94

0

1

111

4

sim16

3

3

7

6

33

101

0

1

102

13

sim17

3

2

3

3

36

97

0

1

108

8

sim18

2

3

3

1

31

108

0

0

100

10

sim19

1

4

3

3

33

104

0

1

100

8

sim20

3

2

4

1

36

91

0

0

112

8

sim21

2

3

3

1

30

111

0

0

108

11

sim22

4

6

4

1

35

88

0

1

112

9

sim23

6

2

3

0

31

90

0

0

103

10

sim24

1

4

1

6

35

121

0

0

114

7

sim25

2

3

3

3

31

107

0

0

113

10

sim26

6

2

7

6

31

96

0

0

116

10

sim27

3

6

1

1

35

126

0

0

100

13

sim28

2

5

4

6

35

111

0

0

99

8

sim29

3

1

5

1

30

124

0

0

112

10

sim30

3

4

1

4

30

110

0

0

98

7

sim31

1

4

2

3

31

124

0

1

108

6

sim32

2

3

6

1

42

124

0

0

110

11

sim33

4

3

2

6

35

90

0

1

99

5

sim34

2

2

3

6

32

94

0

0

97

6

sim35

2

2

3

1

38

94

0

1

113

10

sim36

4

1

2

1

37

108

0

0

117

9

sim37

6

2

3

1

36

110

0

1

107

9

sim38

2

1

8

6

32

86

0

0

99

5

sim39

1

2

1

4

28

89

0

0

97

8

sim40

6

2

6

3

31

102

0

0

108

15

sim41

1

1

6

7

37

102

0

1

100

10

sim42

2

2

3

3

36

87

0

0

99

3

sim43

2

2

1

1

33

105

0

0

101

10

sim44

4

2

8

3

35

121

0

0

103

11

sim45

3

2

5

7

32

111

0

0

103

13

sim46

3

2

4

6

32

122

0

1

105

10

sim47

5

1

4

1

32

121

0

0

115

7

sim48

3

1

2

6

29

110

0

0

117

12

sim49

4

2

8

7

31

124

0

0

99

8

sim50

1

4

7

4

31

110

0

0

111

12