
 1

Gene Regulation

Simulation Tool

Meirav Zehavi

September 2009, under guidance of Prof. Pinter Ron

 2

Table of Contents

1. General Information…………………………..………..….3-4

2. Project Aims…………………………………..………..……5

3. Implementation…………………………………….....……6-7

4. User Guide………………………………………….…….8-15

5. References………………………………………….……….16

 3

1. General Information
Transcription regulation networks can be modeled by directed labeled

graphs. The nodes represent proteins or mRNAs. Their states represent

their activity levels. Weighted edges represent the regulations. The time is

discrete. The basic idea is that in each time unit each node's state changes

according to a transition function which depends on its state and the states

of the sources of its incoming edges in the previous time unit.

The computational model and its link to biology (including an

application) are described in [1]. In this report we shall focus on the

computational model.

In this section we shall give a brief description of the basic model's input

and simulations. Our tool performs simulations which are based on an

extended version of this model, which is described in the following

sections.

A "condition edge" is an edge from a node to a regular edge. A regular

edge can't have more than one incoming condition edge. Each condition

edge has a type which is "zero" or "negative".

An edge is "active" if it doesn't have an incoming condition edge or it has

an incoming condition edge and one of the following is fulfilled:

- The edge’s condition is "zero" and the state of its source node is

zero.

- The edge’s condition is "positive" and the state of its source node

is positive.

1.1 The input:

- A directed weighted labeled graph that includes condition edges.

- The maximal state N a node can have. N is a positive integer.

- The nodes' initial states. These are integers between 0 and N.

- The number of simulation steps.

- The threshold values for the transition function: min_thres and

max_thres. min_thres ≤ 0 ≤ max_thres.

- The weight of each regular edge.

 4

- The type of each condition edge ("zero" or "positive").

1.2 The simulations:

Each combination of the initial states determines a different simulation.

In each step t of each simulation the state of each node i, si(t), is

calculated. si(0) is the initial state of the node. For t > 0, we use the

following algorithm:

1. Compute the multiplications of i's incoming active edges with

their source nodes.

2. Compute ki(t): the sum of the multiplications that were computed

in the previous stage.

3. Calculate si(t) using the following transition function:

min(N, si(t-1) + 1) , ki(t) > max_thres
si(t) = max(0, si(t-1) - 1) , ki(t) < min_thres

 si(t-1) , otherwise

{

 5

2. Project Aims
- Extend the existing model. For example, allow the vertices' states to be

computed using a variety of functions. In the basic model they can

change only by +1 or -1 in each step.

- Implement a program that performs the simulations. Moreover, the

program should provide statistics about all the simulations and specific

information about each simulation (e.g. determine whether a steady state

was reached or not).

- Implement an interface for the user by extending an existing

Cytoscape's [2] plug-in written by Dor Ganor.

 6

3. Implementation
3.1 Details of implemented extensions

- A variety of functions which are used in the calculation of ki(t) for each

node i are available (in addition to the sum function).

- In the basic model each vertex's state can change only by +1 or -1 in

each step. A variety of other functions is available in the extended model.

A function f is chosen for each vertex i. The transition function is

changed to the following function:

 min(N, si(t-1)+f(ki(t))) , f(ki(t)) > 0 ki(t)

si(t) = max(0, si(t-1)+f(ki(t))) , f(ki(t)) < 0 ki(t)
 si(t-1) , otherwise

This transition function is equal to the basic transition function when f is

the function sign.

- Each node has its own min_thres and max_thres.

- A condition edge activates its target edge if the state of its source node

is inside or outside a specified range (rather than only checking if it is in

the range [0,0]). Each condition edge can have its own range.

- The user can choose information that will be provided in addition (or

instead) to the simulations themselves. The information includes statistics

about all the simulations and specific information about each simulation.

The implemented options provide information about last states and

boundaries of states that were reached by several chosen nodes, and the

simulations' steady states.

- A graph can be created for a specified simulation. In order to create the

graph we use jfreechart version 1.0.13. For more information:

www.jfree.org.

The details about the mentioned extensions are described in the "User

Guide" section.

3.2. "net2text" and "model"

The implementation is divided into two different programs: "net2text"

and "model". "net2text" implements the interface. It is based on an

{ ^
^

[min_thres,max_thres]

[min_thres,max_thres]

http://www.jfree.org/

 7

existing Cytoscape's plug-in written by Dor Ganor. The user works in

Cytoscape in order to draw the input graph and insert the information

regarding the simulations and the graph's attributes. A validation of the

input is performed and it is translated into a text file named "network.txt".

"net2text" activates the second program, "model". "model" uses

"network.txt." as its input. It runs the simulations and outputs the

requested information.

The two programs can be used separately since "model", the default

program that "net2text" activates, can be replaced by the user. The user

can choose a different program that will use "network.txt", or he can

create or use an already created text file and activate only "model".

3.3 The format of network.txt

output_file

N

simulation_time

number_of_nodes

NO or YES (if a graph should be created)

node_name Computation Function Threshold (init_state1,…,init_staten)

graph_init_state NO or YES (if appears in the graph)

.

. (all other nodes in the same format)

.

node_name

source_node weight NO or YES dependency_node Dependency

.

. (all other incoming edges)

.

.

. (all other nodes and their incoming edges)

.

all output requests as were given by the user in the last input window.

only if a

graph is

created

incoming

edges'

information

if the edge's

activation depends

on another node

only if the

edge is

dependant

 8

4. User Guide

4.1. Adding the plug-in to Cytoscape

Adding the plug-in to Cytoscape does not require any installation. All that

is necessary to do is to add the plugin's jar file, "net2text", to Cytoscape's

"plugins" folder, located in Cytoscape's installation folder.

Adding the jar file to that folder adds the plug-in to Cytoscape. Next time

the application is opened, the plugin's actions will appear in the "Plugins"

menu.

The model executable, "model", should be added to Cytoscape’s folder

(since it uses a text file, "network.txt", which will be created by the plug-

in and is located in this folder).

4.2. Adding Hyper-edges (Cytoscape V2.6.0)

Hyper-edges are a recently added functionality in Cytoscape, which is

required in our graphs. Hyper-edges come as a plug-in called

"HyperEdgeEditor" in V2.6.0 and should be integrated into future

versions of Cytoscape. Older versions of Cytoscape do not have the

hyper-edge functionality and therefore they will not support our plug-in.

In V2.6.0 the HyperEdgeEditor is already added to Cytoscape's plug-in

library and only needs to be activated. Go to the "Plugins" menu in the

menus bar and select "Manage Plugins". Under "Available to install"

open "Functional Enrichment" and select the "HyperEdgeEditor" plug-in.

Press "install" to complete the process. Next time Cytoscape is opened,

the HyperEdgeEditor will appear in the "Editor" tab of Cytoscape's

Control Panel, and hyper-edges can be used in the graphs.

4.3. Creating the graph

The elements in the Editor are used to create the nodes and the edges of

the graph.

4.3.1. Regular edges

Activating edges are used to create regular edges with default weight of 1.

Inhabiting edges are used to create regular edges with default weight of -1.

 9

4.3.2. Using connector-nodes

Connector nodes are unique nodes used in the reactions to enable the

creation of condition edges.

A regular source node is connected to a connector node by an edge of

type substrate. The connector node is connected to the destination node

by an edge of type product. This is an edge unit. The weight of the

substrate edge is determined according to the weight of the product edge.

Its default weight is 1. A regular node is connected to the connector node

by an edge of type activating. This is the condition edge. It holds the

dependency condition and its weight is 0.

4.3.3. Rules in creating the graph

The following validation rules are checked on the graphs as part of the

plugin's action:

- Each connector node has exactly one outgoing edge of type

product, one incoming edge of type substrate and one incoming

edge of type activating.

- Regular nodes are connected only by activating or inhibiting edges.

- The graph isn’t empty (it has at least one node).

4.4. Preliminary action and attributes

The plug-in contains three actions. The first action is called

"Net2TextInitializer". It is used to add colors to the graph's edges and

attributes to its nodes and edges (with default values explained in 4.4.5

and 4.4.6). The activation of this action is done by selecting

"Net2TextInitializer" from the "Plugins" menu of the menu bar.

4.4.1. The edge's colors

The colors of the edges are set as follows:

- Green for edges with a positive weight.

- Blue for edges with the weight 0.

- Red for edges with a negative weight.

D S

A

product substrate

activating

 10

Activating the preliminary action will color all the edges of the graph

according to their default weights. Any edge added to the graph

afterwards will not have a weight value and therefore will be colored with

the default color, which is black. In order to color a new edge, its weight

attribute should be set. Setting the weight will automatically add the

compatible color to the graph (this means that re-activation of the

preliminary action is not required in order to update colors).

4.4.2. Viewing the attributes

An attribute's value can be seen and selected by adding it in the Data

Panel. For example, the attribute "Weight" can be selected in the Data

Panel as follows:

1. Go to the "Edge Attribute Browser" in the Data Panel.

2. Push the button "Select Attribute" (in V2.6.0 the button is

located on the top left corner of the Data Panel and looks like a

small gray table). Pushing the button opens the list of the edges'

attributes.

3. Select "Weight". Selection of other unneeded attributes can be

cleared. Now, after selecting an edge in the graph its weight can be

seen in the "Edge Attribute browser" tab of the Data Panel.

4.4.3. Setting attributes

An attribute of an edge or a node can be edited by selecting it on the

graph, double clicking on the wanted attribute in the Data Panel, and

changing its value.

Changing the sign of the weight attribute of an edge (positive, negative or

zero) will automatically change the edge's color accordingly.

4.4.4. Re-activating the preliminary action

Re-activation of the preliminary action will restore the default values of

the attributes and the corresponding colors of the edges. Any manual

changes to these values will be lost.

 "Net2TextPartialInitializer" is the same as the preliminary action (adds

colors and attributes), except that it applies default values only to

attributes that weren’t already initialized. "Net2TextPartialInitializer"

saves manual changes. It is located in the "Plugins" menu of the menu

bar.

 11

4.4.5. The nodes' attributes

- Computation: A variety of mathematical and statistical functions is

available. Their argument is the value of the multiplications of the node’s

incoming active edges with their sources' states.

- SUM: Sum.

- MUL: Multiplication.

- MIN: Minimum.

- MAX: Maximum.

- AVG: Average.

- MED: Median.

Notes: - SUM is the default option.

- If the node isn’t a target of any active edges, the computation's

result is 0.

- The computation's result is rounded.

- Function: A variety of mathematical functions is available. Their

argument is the result of the computation function. Their result is the

value that will be added to the node’s state in the calculation of its next

state (if it is not in the thresholds' range).

- SIG(n): Extended sign. Returns n if the argument is positive, -n

if the argument is negative and 0 otherwise. n is an integer.

- POL((c1,d1),(c2,d2),…,(cn,dn)): Extended polynomial. Each ci and

each di is an integer. If the argument's value x is 0 then xd
, when

d is negative, is defined as 0.

- LOG(base): Logarithm. base is the logarithm’s base, which must

be positive and not equal to 1. base can be an integer or e

(syntax: LOG(e)). If the argument isn’t positive, the result is

defined as 0.

- POW(base): Power. base is the power’s base, which is an

integer or e.

- ABS: Absolute value.

- SQT: Square root. If the argument is negative, the result is

defined as 0.

Notes: - SIG(1) is the default option.

 - The function's result is rounded.

- Threshold: Each node has its own thresholds.

 Syntax: (min_thres,max_thres).

 12

 min_thres ≤ 0 ≤ max_thres.
 The default is (0,0).

4.4.6. The edges' attributes

- Dependency: Apply this attribute to edges that activate other edges.

Syntax: IN(min,max) or OUT(min,max). min and max

are integers and min ≤ max.

The target edge is activated if its source's state is in or

equal to the range, or out of the range, corresponding to

IN or OUT.

The default is OUT(0,0).

- Weight: Change this attribute’s default value to edges that don’t

activate other edges and are not of type substrate. An edge’s

weight is an integer.

 The default value is determined in the following way:

- For edges outgoing from regular nodes:

 * Condition edges – "0".

 * Edges of type "inhabiting" – "-1".

 * Regular edges of type "activating" – "1".

 * Edges of type "product"– "1".

- For edges outgoing from connector nodes: The value is "1"

or "-1" according to the connector node's "product"

outgoing edge.

Note: After the preliminary edges of type inhibiting can be

given a positive weight and edges of type activating can be

given a negative weight. The colors are changed according to

the weights.

4.5. Main action

The main action of the plug-in is called "Net2TextPlugin". It is used to

gather the simulations' information from the user. It creates the output file

using "model" as its default.

Selecting this action opens a series of input windows.

4.5.1. First input window (general information)

The first window gathers the following information:

- N, the maximal state a node can have. N must be a positive

integer.

 13

- The simulations' time. This is the number of steps to be done in

each simulation. It doesn't include step 0, which represents the

initial states of each simulation. The simulations' time must be a

positive integer.

- The model that is activated by the plug-in in order to perform

the simulations. This line should be left empty in order to

activate the default model (see the "Implementation" section for

more information).

- The output file. The button "Choose Output File" opens a file

chooser in which a text file should be chosen. The output will

be written in this file. Notice that the file must have a ".txt"

extension.

Moving to the second input window is done by clicking on the "Next"

button in the last line.

4.5.2. Second input window (initial states)

The second window gathers information regarding the initial states of the

nodes in the simulations. This window contains a table in which each

column represents a node from the graph and each row represents a

possible initial state. The titles of the columns state the names of the

nodes represented by them. The initial states appear in the cells.

Selecting an initial state for a node is done by checking its box. The last

cell of each column contains a "Select All" check box. Checking this box

selects all of the possible initial states for its corresponding node. At least

one initial state must be entered for each node, thus at one box must be

checked in each column.

Moving to the third input window is done by clicking on the "Next"

button on the bottom of the window.

4.5.3. Third input window (graph)

The third input window gathers the necessary information for creating a

graph for a single simulation. Its structure is the same as the second

window. Choosing "Select" for a node means that this node will appear in

the graph. If the following conditions are not fulfilled, the graph won’t be

created (you can click "Next" if you aren't interested in creating a graph):

- Exactly one initial state is chosen for each node.

- At least one node is chosen to appear in the graph. If more then

ten nodes are chosen, only the first ten will appear in the graph.

- The chosen initial states were chosen in the previous window.

 14

Moving to the fourth input window is done by clicking on the "Next"

button on the bottom of the window.

4.5.4. Fourth input window (output requests)

In the fourth input window the information that will be printed in the

output file is chosen. There are ten text boxes that can be filled (at least

one of them should be filled).

The available options:

- AllSim: Prints all the simulations (the nodes' states in each step

of each simulation). This option can be chosen only once.

- LastStates(node1,…,noden): Prints the last states of the specified

nodes after each simulation. The specified nodes must appear in

the graph. After all the simulations it prints the percentage of

simulations that reached each possible combination of the last

states. This option can be chosen only once.

- SteadyStateStatistics(step1,…,stepn): Prints the step in which the

simulation reached a steady state (or NOT REACHED) after each

simulation. After the simulations it prints for each specified step

the percentage of simulations that reached a steady state before

(and including) this step.

Notes: - 0 ≤ step1 < step2 < … < stepn

- The last step in a simulation doesn’t detect a steady

state since the simulation stops exactly after it.

 - This option can be chosen only once.

- Limits(SE,node,state) or Limits(BE,node,state): Prints the

minimal and maximal states of the specified node that were

reached in each simulation and the minimal step in which it was

reached. The specified node must appear in the graph. It also

prints the first step in which the node’s state was smaller or

equal, or bigger or equal (corresponding to SE and BE) than the

specified state, or NOT REACHED.

The finish button performs a graph correctness check (according to

section 4.3.3) and a verification of the syntax of all the attributes. The text

file ("network.txt") which represents the graph and all the other necessary

information is created, and the chosen model is activated, creating the

requested output.

 15

4.4.5. Re-activating the main action

Re-activation of the main action allows the changing of the simulations'

values and run the model again on your graph.

4.6. Save and load your network

Saving the network is done by selecting the "save as" or "save" options

from the "File" menu.

Loading the network is done by selecting the "open" option from the

"File" menu. If the network's appearance or the Editor is different from

how it should be, select "BioChemicalReaction" in "Current Visual Style"

which is located in the "VisMapper" tab of the Control Panel. Also, if the

edges' colors don’t appear, select the plug-in’s “net2textPartialInitializer”.

 16

5. References
[1] Amir Rubinstein, Vyacheslav Gurevich, Zohar Kasulin-Boneh, Lilach

Pnueli, Yona Kassir and Ron Y. Pinter. Faithful modeling of transient

expression and its application to elucidating negative feedback regulation.

Proceedings of the National Academy of Sciences (PNAS), Vol. 104, No.

15, pp. 6241-6246, April 2007.

[2] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D.

Ramage, N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: a software

environment for integrated models of biomolecular interaction networks.

Genome Research, 13(11):2498–2504, November 2003.

http://www.pnas.org/cgi/content/full/104/15/6241
http://www.pnas.org/cgi/content/full/104/15/6241

